[1] |
张博. 基于Kinect传感器的移动机器人环境检测方法[J]. 电子科技, 2018,31(7):93-95,99.
|
|
Zhang Bo. Kinect sensor based mobile robot environment detection method[J]. Electronic Science and Technology, 2018,31(7):93-95,99.
|
[2] |
郭姝言, 刘桥, 卢进. 一种改进的医学图像深度信息恢复算法[J]. 电子科技, 2016,29(1):48-50,55.
|
|
Guo Shuyan, Liu Qiao, Lu Jin. An improved medical image depth information recovery algorithm[J]. Electronic Science and Technology, 2016,29(1):48-50,55.
|
[3] |
Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. Santiago:International Conference on Computer Vision, 2015.
|
[4] |
Godard C, Mac Aodha O, Brostow G J. Unsupervised monocular depth estimation with left-right consistency[C]. Hawaii:Computer Vision and Pattern Recognition, 2017.
|
[5] |
Zheng C, Cham T J, Cai J. T2net:Synthetic-to-realistic translation for solving single-image depth estimation tasks[C]. Munich:European Conference on Computer Vision(ECCV), 2018.
|
[6] |
Garg R, Bg V K, Carneiro G, et al. Unsupervised cnn for single view depth estimation: Geometry to the rescue[C]. Amsterdam:European Conference on Computer Vision, 2016.
|
[7] |
Xie J, Girshick R, Farhadi A. Deep3D: Fully automatic 2D-to-3D video conversion with deep convolutional neural networks[C]. Amsterdam:European Conference on Computer Vision, 2016.
|
[8] |
Shrivastava A, Pfister T, Tuzel O, et al. Learning from simulated and unsupervised images through adversarial training[C]. Hawaii:Computer Vision and Pattern Recognition, 2017.
|
[9] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:Computer Vision and Pattern Recognition, 2016.
|
[10] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego: International Conference on Learning Representations, 2015.
|
[11] |
Alain H, Ziou D. Image quality metrics: PSNR vs. SSIM[C]. Istanbul:International Conference on Pattern Recognition, 2010.
|
[12] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Munich:International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
|
[13] |
Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The kitti vision benchmark suite[C]. Rhode Island:Computer Vision and Pattern Recognition, 2012.
|
[14] |
Gaidon A, Wang Q, Cabon Y, et al. Virtual worlds as proxy for multi-object tracking analysis[C]. Las Vegas:Computer Vision and Pattern Recognition, 2016.
|
[15] |
Kingma D, Ba J. Adam:a method for stochastic optimization[C]. San Diego:International Conference on Learning Representations, 2015.
|
[16] |
Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding[C]. Las Vegas: Computer Vision an
|