[1] |
方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018,54(13):11-18.
|
|
Fang Luping, He Hangjiang, Zhou Guomin. Research overview of object detection methods[J]. Computer Engineering and Applications, 2018,54(13):11-18.
|
[2] |
汪欣, 吴薇, 曾照. 基于视频的人脸检测算法[J]. 电子科技, 2019,31(1):1-7.
|
|
Wang Xin, Wu Wei, Zeng Zhao. Video-based face detection algorithm[J]. Electronic Science and Technology, 2019,31(1):1-7.
|
[3] |
Yao J, Odobez J. Multi-layer background subtraction based on color and texture[C]. Minneapolis:IEEE Conference on Computer Vision and Pattern Recognition, 2007.
|
[4] |
Xu J, Ding X Q, Wang S J, et al. Background subtraction based on a combination of texture, color and intensity[C]. Beijing:The Ninth International Conference on Signal Processing, 2008.
|
[5] |
Tuzel O, Porikli F, Meer P. A Bayesian approach to background modeling[C]. San Diego:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
|
[6] |
Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005,11(3):172-185.
doi: 10.1016/j.rti.2004.12.004
|
[7] |
Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Transactions on Image Processing, 2008,17(7):1168-1177.
doi: 10.1109/TIP.2008.924285
pmid: 18586624
|
[8] |
Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4):657-662.
pmid: 16566514
|
[9] |
Liao S C, Zhao G Y, Kellokumpu V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[C]. San Francisco:IEEE Conference on Computer Vision and Pattern Recognition, 2010.
|
[10] |
St-Charles P L, Bilodeau G A, Bergevin R. Flexible background subtraction with self-balanced local sensitivity[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[11] |
Zhang S P, Yao H X, Liu S H. Dynamic background modeling and subtraction using spatio-temporal local binary patterns[C]. San Diego:The Fifteenth IEEE International Conference on Image Processing, 2008.
|
[12] |
杜鹃, 吴芬芬. 高斯混合模型的运动目标检测与跟踪算法[J]. 南京理工大学学报, 2017,41(1):41-46.
|
|
Du Juan, Wu Fenfen. Movement target tracking algorithm by using Gaussian mixture model[J]. Journal of Nanjing University of Science and Technology, 2017,41(1):41-46.
|
[13] |
杨大勇, 杨建华, 卢伟基. 于动态阈值的核密度估计前景检测算法[J]. 计算机应用, 2015,37(5):2033-2038.
|
|
Yang Dayong, Yang Jianhua, Lu Wei. Foreground detection algorithm based on dynamic threshold kernel density estimation[J]. Journal of Computer Applications, 2015,37(5):2033-2038.
|
[14] |
Zhang Z B, Yuan X B. An improved PBAS algorithm for dynamic background[J]. Electronic Design Engineering, 2017,25(3):35-40.
|
[15] |
Wang Y, Jodoin P M, Porikli F, et al. CDnet 2014:an expanded change detection benchmark dataset[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014.
|
[16] |
郭治成, 党建武, 王阳萍, 等. 基于多特征融合的背景建模方法[J]. 光电工程, 2018,45(12):180-186.
|
|
Guo Zhicheng, Dang Jianwu, Wang Yangping, et al. Background modeling method based on multi-feature fusion[J]. Opto-Electronic Engineering, 2018,45(12):180-186.
|