[1] |
项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
|
|
Xiang Liang. Practice of recommender system[M]. Beijing: The People's Posts and Telecommunications Press, 2012.
|
[2] |
Pavan K, Vairachilai S, Potluri S, et al. Recommender systems: Algorithms and applications[M]. Boca Raton: CRC Press, 2021.
|
[3] |
Hsu C L. A multi-valued and sequential-labeled decision tree method for recommending sequential patterns in cold-start situations[J]. Applied Intelligence, 2021, 51(1):506-526.
doi: 10.1007/s10489-020-01806-0
|
[4] |
Wang Z, Yu Q, Shen C, et al. Feature selection in click-through rate prediction based on gradient boosting[M].Berlin:International Conference on Intelligent Data Engineering and Automated Learning, 2016.
|
[5] |
Wen H, Zhang J, Lin Q, et al. Multi-level deep cascade trees for conversion rate prediction in recommendation System[C]. Honolulu: Proceedings of the Thirty-third AAAI Conference on Artificial Intelligence, 2019.
|
[6] |
Ling X, Deng W, Gu C, et al. Model ensemble for click prediction in bing search ads[C]. Perth: Proceedings of the Twenty-sixth International Conference on World Wide Web Companion, 2019.
|
[7] |
McMahan H B, Holt G, Scully D, et al. Ad click prediction a view from the trenches[C]. Chicago: Proceedings of the Nineteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013.
|
[8] |
Ta A P. Factorization machines with follow- the- regularized- leader for CTR prediction in display advertising[C]. Santa Clara: Proceedings of the IEEE International Conference on Big Data, 2015.
|
[9] |
Zhang S, Yao L, Sun A, et al. Deep learning based recommender system:A survey and new perspectives[C]. Como: Proceedings of the Eleventh ACM Conference on Recommender Systems, 2017.
|
[10] |
Cheng H T, Koc L, Harmsen J, et al. Wide & Deep learning for recommender systems[C]. Boston: Proceedings of the First Workshop on Deep Learning for Recommender Systems, 2016.
|
[11] |
Guo H, Tang R, Ye Y, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]. Melbourne: Proceedings of the Twenty-sixth International Joint Conference on Artifcial Intelligence, 2017.
|
[12] |
Strub F, Gaudel R, Mary J. Hybrid recommender system based on autoencoders[C]. Boston: Proceedings of the First Workshop on Deep Learning for Recommender Systems, 2016.
|
[13] |
Tahmasebi H, Ravanmehr R, Mohamadrezaei R. Social movie recommender system based on deep autoencoder network using Twitter data[J]. Neural Computing and Applications, 2021, 33(5):1607-1623.
doi: 10.1007/s00521-020-05085-1
|
[14] |
Gong Y, Zhang Q. Hashtag recommendation using Attention-based convolutional neural network[C]. New York: Proceedings of the Conference Division and the AI Journal Division, 2016.
|
[15] |
Suglia A, Greco C, Musto C, et al. A deep architecture for content-based recommendations exploiting recurrent neural networks[C]. Bratislava: Proceedings of the Twenty-fifth Conference on User Modeling, Adaptation and Personalization, 2017.
|
[16] |
许凤翔. 一种改进相似度的协同过滤算法实现[J]. 电子科技, 2020, 33(2):54-59.
|
|
Xu Fengxiang. Implementation of a collaborative filtering algorithm based on improved similarity[J]. Electronic Science and Technology, 2020, 33(2):54-59.
|
[17] |
卢佳伟, 陈玮, 尹钟. 融合TextRank算法的中文短文本相似度计算[J]. 电子科技, 2020, 33(10):51-56.
|
|
Lu Jiawei, Chen Wei, Yin Zhong. Chinese short text similarity calculation based on TextRank algorithm[J]. Electronic Science and Technology, 2020, 33(10):51-56.
|
[18] |
Gao L, Dai K, Gao L, et al. Expert knowledge recommendation systems based on conceptual similarity and space mapping[J]. Expert Systems with Applications, 2019, 13(6):242-251.
|
[19] |
Behera D K, Da S M, Swetanisha S. Predicting users' preferences for movie recommender system using rstricted boltzmann machine[M]. Singapore: Springer Nature, 2019.
|
[20] |
Rendle S. Factorization machines[C]. Sydney: Proceedings of the Tenth IEEE International Conference on Data Mining, 2010.
|
[21] |
Juan Y, Zhuang Y, Chin W S, et al. Field-aware factorization machines for CTR prediction[C]. Boston: Proceedings of the Tenth ACM Conference on Recommender System, 2016.
|
[22] |
Blondel M, Fujino A, Ueda N, et al. Higher-order factorization machines[C]. New York: Proceedings of the Advances in Neural Information Processing Systems, 2016.
|
[23] |
Xiao J, Ye H, He X, et al. Attentional factorization machines:Learning the weight of feature interactions via attention networks[C]. Melbourne: Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence, 2017.
|
[24] |
Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]. Springer: Proceedings of the European Conference on Information Retrieval, 2016.
|
[25] |
Qu Y, Han C, Kan R, et al. Product-based neural networks for user response prediction[C]. Barcelona: Proceedings of the IEEE International Conference on Data Mining, 2016.
|
[26] |
Wang R, Fu B, Fu G, et al. Deep & Cross network for Ad click predictions[C]. Halifax: Proceedings of the Twenty-third ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2017.
|
[27] |
He X, Chua T S. Neural factorization machines for sparse predictive analytics[J]. Proceeding of the Fortieth International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017.
|
[28] |
Lian J, Zhou X, Zhang F, et al. xDeepFM:Combining explicit and implicit feature interactions for recommender systems[C]. London: Proceedings of the Twenty-fourth ACM SIGKDD International Conference, 2018.
|
[29] |
Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
|