电子科技 ›› 2024, Vol. 37 ›› Issue (7): 33-42.doi: 10.16180/j.cnki.issn1007-7820.2024.07.005

• • 上一篇    下一篇

融合目标检测与DWA算法的AGV路径

李筠, 刘虎, 杨海马, 王原, 徐文成, 黄宏欣   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-01-29 出版日期:2024-07-15 发布日期:2024-07-17
  • 作者简介:李筠(1975-),女,博士,副教授。研究方向:信号分析与处理、误差分析以及光电测量等。
    刘虎(1996-),男,硕士研究生。研究方向:智能检测技术与仪器。
    杨海马(1979-),男,博士,副教授。研究方向:数字信号分析与处理、SPR传感器机理与仿真、模式识别系统开发、符号滑块变结构控制。
  • 基金资助:
    中科院空间主动光电技术重点实验室开放基金(2021ZDKF4);上海市科委科技创新行动计划(21S31904200);上海市科委科技创新行动计划(22S31903700)

Research on AGV Path Fusion of Object Detection and DWA Algorithm

LI Jun, LIU Hu, YANG Haima, WANG Yuan, XU Wencheng, HUANG Hongxin   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2023-01-29 Online:2024-07-15 Published:2024-07-17
  • Supported by:
    Open Fund of the Key Laboratory of Space Active Optoelectronic Technology of the Chinese Academy of Sciences(2021ZDKF4);Shanghai Municipal Commission of Science and Technology Innovation Action Plan(21S31904200);Shanghai Municipal Commission of Science and Technology Innovation Action Plan(22S31903700)

摘要:

针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dynamic Window Approach)局部动态路径规划算法进行AGV路径规划与导航,使AGV叉车在未知环境或局部环境信息未知的环境中能快速识别目标位置并完成路径规划到达目标位置。实验结果表明,相较于改进前方法,文中所提方法在路径长度、耗费时间以及AGV叉车航向误差方面均有良好表现,路径长度平均减少12%,耗费时间平均减少约5%AGV航向与目标航向的平均误差在5°以内。所提方法提高了AGV叉车在未知环境中的工作效率以及工作灵活性。

关键词: AGV, YOLOv5, DWA算法, 全局路径规划, 局部路径规划, 目标检测, 导航, 自动导引

Abstract:

In view of the path planning and navigation problem when the AGV forklift is in the situation of unknown environment information or dynamic change of environment, a method is proposed to obtain the target position by YOLOv5(You Only Look Once version 5) target detection algorithm. The global basic path is planned according to the target location, and the method of AGV path planning and navigation is integrated with DWA(Dynamic Window Approach) local dynamic path planning algorithm, so that the AGV forklift can quickly identify the target location and complete the path planning to reach the target location in the unknown environment or the environment with unknown local environment information. The experimental results show that compared with the previous method, the proposed method has good performance in terms of path length, time consumption and heading error of AGV forklift truck. The average path length is reduced by 12%, the average time consumption is reduced by about 5%, and the average error between the AGV heading and the target heading is within 5°. The proposed method can improve the working efficiency and flexibility of AGV forklift in unknown environment.

Key words: AGV, YOLOv5, DWA algorithm, global path planning, local path planning, target detection, navigation, automatic guidance

中图分类号: 

  • TP242.6
Baidu
map