西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (2): 61-68.doi: 10.19665/j.issn1001-2400.2019.02.011

• • 上一篇    下一篇

一种多视图深度融合的连续性缺失补全方法

毛莺池1,张建华1,陈豪2,3   

  1. 1. 河海大学 计算机与信息学院,江苏 南京 211100
    2. 河海大学 水利水电学院,江苏 南京 210098
    3. 华能澜沧江水电股份有限公司,云南 昆明 650214
  • 收稿日期:2018-09-21 出版日期:2019-04-20 发布日期:2019-04-20
  • 作者简介:毛莺池(1976-),女,教授,博士,E-mail:yingchimao@hhu.edu.cn.
  • 基金资助:
    "十三五"国家重点研发计划(2018YFC0407105);"十三五"国家重点研发计划(2018YFC0407905);"十三五"国家重点研发计划(2016YFC0400910);华能集团重点研发课题(HNKJ17-21);中央高校基本科研业务费专项资金(2017B16814);中央高校基本科研业务费专项资金(2017B16814)

Successive missing completion based on deep fusion from multiple views

MAO Yingchi1,ZHANG Jianhua1,CHEN Hao2,3   

  1. 1. College of Computer and Information, Hohai University, Nanjing 211100, China
    2. College of Water Resources and Hydropower, Hohai University, Nanjing 210098, China
    3. Huaneng Lancang River Hydropower Co., Ltd., Kunming 650214, China
  • Received:2018-09-21 Online:2019-04-20 Published:2019-04-20

摘要:

针对现有连续性缺失补全方法的不足,建立了一种多视图深度融合的连续性缺失补全方法。该方法采用反转距离加权插值、双向简单指数平滑、用户协同过滤、能量扩散协同过滤及文本嵌套的方法,分别得到时空和语义缺失数据补全中间结果;构造了神经网络模型融合跨时空和语义视图中的互补异构信息,完成连续性缺失补全。实验表明,该方法补全连续性缺失不但效率高,而且比时空多视图补全在平均绝对误差与平均相对误差上分别降低7%和22%,具备普适性且适用于相关时空连续性缺失序列补全领域。

关键词: 连续性缺失数据补全, 人工神经网络, 时空, 深度融合

Abstract:

Aiming at the shortcomings of existing successive missing complement methods, a successive missing data completion method for multi-view depth fusion is established. The method adopts inverse distance weighted interpolation, bidirectional simple exponential smoothing, user-based collaborative filtering, the collaborative filtering based on mass diffusion and structure embeddings, to obtain intermediate results of five missing data in spatiotemporal and semantic respectively; then, this method constructs a neural network model that combines complementary heterogeneous information across time and space and semantic views to achieve successive missing completion. Experimental results show that the method is universally applicable to the field of Spatial-Temporal successive missing sequence completion and, that it not only achieves a high efficiency, but also reduces the mean absolute error and the mean relative error by 7% and 22%, respectively, compared with the Spatial-Temporal Multi-view completion method.

Key words: successive missing completion, artificial neural network, spatial and temporal, deep integration

中图分类号: 

  • TP311
Baidu
map