西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (3): 148-153.doi: 10.19665/j.issn1001-2400.2019.03.022

• • 上一篇    下一篇

结合注意力机制的人脸超分辨率重建

陈晓范,申海杰,边倩,王振铎,田新志   

  1. 西安思源学院 电子信息工程学院,陕西 西安 710038
  • 收稿日期:2018-11-06 出版日期:2019-06-20 发布日期:2019-06-19
  • 作者简介:陈晓范(1980-),男, 讲师,E-mail: xianfan_chen321@126.com.
  • 基金资助:
    国家自然科学基金(81571772);西安思源学院自然科学研究基金(XASY-B1803);陕西省教育厅自然科学研究基金(17JK1073)

Face image super-resolution with an attention mechanism

CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi   

  1. School of Electronical and Information Engineering, Xi'an SiYuan Univ., Xi'an 710038, China
  • Received:2018-11-06 Online:2019-06-20 Published:2019-06-19

摘要:

因受成像设备限制,得到的人脸图像分辨率通常较低,针对此问题提出了一种将生成对抗网络和注意力机制相结合的方法,来对人脸图像进行多尺度超分辨率重建。将深度残差网络和深度神经网络分别作为生成器和判别器,并将注意力模块与深度残差网络中的残差块相结合,重建出与高分辨率图像高度相似且难以被判别器区分的超分辨率人脸图像。实验结果证明,所提出的方法能够有效地提升人脸图像的分辨率,同时也证明了注意力机制在图像细节信息重建中的重要作用。

关键词: 超分辨率重建, 生成对抗网络, 注意力机制, 深度残差网络, 深度神经网络

Abstract:

Because of the limitation of the imaging equipment, the face images captured by it usually have the problem of low resolution and low quality. This paper proposes a method based on the generative adversarial network and attention mechanism for the multi-scale super-resolution of face images. In this paper, the deep residual network and the deep convolutional neural network (VGG-net) are used as the generator and the discriminator, respectively. The attention modules are combined with the residual blocks in the deep residual network to reconstruct face images which are highly similar to the high-resolution images and difficult for the discriminator to distinguish. Experimental results demonstrate the effectiveness of the proposed method in multi-scale face image super-resolution and the important role of the attention mechanism in image detail reconstruction.

Key words: super-resolution, generative adversarial network, attention mechanism, deep residual network, deep convolutional neural network

中图分类号: 

  • TP391
Baidu
map