J4 ›› 2015, Vol. 42 ›› Issue (6): 81-87.doi: 10.3969/j.issn.1001-2400.2015.06.015

• 研究论文 • 上一篇    下一篇

室内定位系统中指纹库的优化方法

马鑫迪;马建峰;高胜   

  1. (西安电子科技大学 计算机学院,陕西 西安  710071)
  • 收稿日期:2014-07-10 出版日期:2015-12-20 发布日期:2016-01-25
  • 通讯作者: 马鑫迪
  • 作者简介:马鑫迪(1989-),男,西安电子科技大学博士研究生,E-mail:xdma1989@163.com.
  • 基金资助:

    国家自然基金委员会-广东联合基金重点基金资助项目(U1135002);国家自然科学基金资助项目(61303221, 61272398);中央高校基本科研业务费专项资金资助项目(JY10000903001)

Fingerprint optimization method for the indoor localization system

MA Xindi;MA Jianfeng;GAO Sheng   

  1. (School of Computer Science and Technology, Xidian Univ., Xi'an  710071, China)
  • Received:2014-07-10 Online:2015-12-20 Published:2016-01-25
  • Contact: MA Xindi

摘要:

指纹库的好坏直接影响到室内定位的定位精度,而现有的室内定位算法大都是建立在原始指纹库的基础之上的,缺乏对指纹库的优化处理.笔者利用k-means算法优化指纹库的构建过程,通过聚类的思想剔除已采集指纹库中的“噪点”,从而为室内定位算法提供较好的数据样本源.实验结果表明,与现有的室内定位系统相比,利用优化后的指纹库进行定位能够明显提高室内定位的精度.

关键词: 智能终端, k-means方法, 指纹库优化, 去噪

Abstract:

The accuracy of the indoor localization is influenced directly by the quality of the fingerprint. But the indoor localization algorithms in existence are almost conducted based on the original fingerprint which is not optimized. The k-means is introduced to optimize the fingerprint in this paper. And deleting the collected bad-points through the theory of cluster could make the fingerprint more accurate for the indoor localization algorithm. Compared with the indoor localization systems in existence, the result of experiments shows that the optimized fingerprint can increase the accurate of indoor localization with a higher probability.

Key words: smartphone, k-means method, optimize fingerprint, delete bad-point

Baidu
map