西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

多观测值约束的可见光定位算法

鲁航;崔维嘉;巴斌;逯志宇   

  1. (信息工程大学 信息系统工程学院,河南 郑州 450001)
  • 收稿日期:2016-08-18 出版日期:2017-08-20 发布日期:2017-09-29
  • 作者简介:鲁航(1993-),男,信息工程大学硕士研究生,E-mail: 1421401588@qq.com
  • 基金资助:

    国家自然科学基金资助项目( 61401513)

Visible light localization algorithm based on multi-measurements constraints

LU Hang;CUI Weijia;BA Bin;LU Zhiyu   

  1. (Institute of Information System Engineering, Information Engineering Univ., Zhengzhou 450001, China)
  • Received:2016-08-18 Online:2017-08-20 Published:2017-09-29

摘要:

在室内复杂多噪的可见光传输环境中,针对由于传统接收光强检测定位存在的建模不准确而导致定位精度低和成像定位存在的终端位置坐标与姿态角约束信息不足的问题,提出一种多观测值约束的可见光定位算法.该算法首先根据接收光强检测定位与成像定位建立联合定位状态空间模型;据此构造系统观测值与状态值,列出观测方程与状态方程;最后利用无损卡尔曼滤波算法进行求解得到定位结果.仿真实验表明,与接收光强检测定位和成像定位相比,该算法的定位结果均方误差更加逼近克拉美罗下界且可定位概率更高.

关键词: 可见光, 室内定位系统, 成像传感器, 克拉美罗下界

Abstract:

In the indoor visible light transmission environment with complex noise, traditional received signal strength indication(RSSI)localization algorithm and imaging localization algorithm are unable to accurately determine the reason of the inaccurate localization model and inadequate constraints of position coordinates. In order to solve the problems, a visible light localization algorithm based on multi-measurements constraints is presented in the paper. The algorithm first constructs a joint localization state space model based on RSSI localization and the imaging localization algorithm. Then, states, measurements and their equations are constructed based on the space model. Finally, the equations are resolved using the unscented Kalman filter(UKF). Compared with RSSI localization and imaging localization, simulation results show that the RMSE of the proposed algorithm could be closer to the Cramer Rao bound. Besides, the localization probability of the proposed algorithm is higher than that of RSSI localization and imaging localization algorithm.

Key words: visible light, indoor positioning system, image sensor, Cramer-Rao lower bounds

Baidu
map