西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

高斯过程回归下的多机动扩展目标跟踪

李翠芸1;王精毅1,2;姬红兵1   

  1. (1. 西安电子科技大学 电子工程学院,陕西 西安 710071;
    2. 中国人民解放军95980部队,湖北 襄阳 441000)
  • 收稿日期:2016-12-02 出版日期:2017-12-20 发布日期:2018-01-18
  • 作者简介:李翠芸(1976-),女,副教授,博士,E-mail: cyli@xidian.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(61372003); 国家自然科学基金青年资金资助项目(61301289)

Multiple maneuvering extended targets tracking with Gaussian process regression

LI Cuiyun1;WANG Jingyi1,2;JI Hongbing1   

  1. (1. School of Electronic Engineering, Xidian Univ., Xi'an 710071, China;
    2. Unit 95980, PLA, Xiangyang 441000, China)
  • Received:2016-12-02 Online:2017-12-20 Published:2018-01-18

摘要:

针对现有多机动扩展目标跟踪算法中形状估计复杂,在考虑杂波的情况下目标跟踪精度不高等问题,提出了一种高斯过程回归下的多机动扩展目标跟踪算法.该算法采用星凸模型对目标进行建模,在单机动扩展目标跟踪算法的基础上引入多目标跟踪算法中的权值参数以实现对多目标的处理,同时利用高斯过程回归对目标形状进行估计.实验仿真表明,所提算法能够对同一场景下多个不同形状的机动扩展目标进行有效跟踪,并且在计算速度、估计精度等方面要优于传统非椭圆机动扩展目标跟踪算法.

关键词: 多机动扩展目标, 星凸模型, 高斯过程回归, 形状估计

Abstract:

In view of the complexity of estimating the shape of the extended target and the low accuracy in multiple maneuvering extended targets tracking in the clutters, a multiple maneuvering extended targets tracking algorithm with Gaussian Process Regression is proposed. First, the extension of targets is modeled as a star-convex model. Then, the concept of weights used in the multiple targets tracking algorithm is introduced to the single maneuvering extended target tracking algorithm to realize multi-targets tracking. Finally, the Gaussian Process Regression is used to estimate the shape for the extended target. Simulation shows that the proposed algorithm is capable of tracking multiple maneuvering extended targets in the same scene with different shapes, and outperforms the traditional non-ellipsoidal extended target tracking algorithm in the estimation precision and computing speed.

Key words: multiple maneuvering extended targets, star-convex models, Gaussian processes regression, shape estimation

Baidu
map