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Abstract: Internet worms can propagate across networks at terrifying speeds, reduce network security to a remarkable extent,
and cause heavy economic losses. Thus, the rapid elimination of Internet worms using partial immunization becomes a
significant matter for sustaining Internet infrastructure. This paper addresses this issue by presenting a novel worm susceptible-
vaccinated-exposed-infectious-recovered model, named the SVEIR model. The SVEIR model extends the classical susceptible-
exposed-infectious-recovered model (refer to SEIR model) through incorporating a saturated incidence rate and a partial
immunization rate. The basic reproduction number in the SVEIR model is obtained. By virtue of the basic reproduction number,
we prove the global stabilities of an infection-free equilibrium point and a unique endemic equilibrium point. Numerical
methods are used to verify the proposed SVEIR model. Simulation results show that partial immunization is highly effective for
eliminating worms, and the SVEIR model is viable for controlling and forecasting Internet worms.
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1 Introduction security risks on networks'". Especially, with the

development of the IoT (Internet of Things), the
An Internet worm is a type of malicious code capable threat of Internet worms can be expected to become
of duplicating itself and propagating across the increasingly serious for network security. Therefore,
Internet. The code red worm in 2001, Slammer worm combating worms is an impending task for defenders.
in 2003, Blaster worm in 2003, Witty worm in 2004, Based on the comparability between malicious worms
and Conficker worm in 2008 are a few examples of and biological viruses, numerous mathematical
Internet worms, which have caused heavy economic models describing worm propagation have been
losses and tremendous social panic' ™. Network proposed to study worms’ behaviors in the past
experts considered Internet worms the highest decade™". Mathematical modeling is important in
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determining effective methods against Internet worms
in different transmission settings and in quantifying
the effects of defending methods. Many models and
tools have been proposed to address the dynamic
attacking behaviors of worms and effectively counter
attacking them under different conditions, e.g., time
delay”, quarantine!"”, and antivirus software!"". All the
above models are based on the SIR classical epidemic

1", The SIR model has some drawbacks because

mode
it assumes that a susceptible host becomes infectious
immediately after contacting with an infected one.
Actually, many worms have an exposed period during
which susceptible hosts are infected but are not yet
contagious. To overcome this drawback, a new model,
named the SEIR model, was introduced. The SEIR
model incorporates an exposed class'"*. Immunization
is one of the commonly used methods for controlling
and eliminating worms’ propagation!*'*. However,
all of the models assumed that the vaccine hosts
obtained full immunization. This is not consistent
with reality. Considering worms’ rapid propagation,
users or network administrators cannot immunize
the entire host population in real networks. In other
words, it is very difficult to obtain full immunization
for the vaccine hosts. Thus, partial immunization as a
fungible and feasible method for eliminating worms
has been used for predicting and controlling infectious
diseases """, In many worm propagation models, the
bilinear infection rate /BSI[IS’m]is used, where, S and
I denote the number of susceptible and infectious
hosts, respectively. The saturated infection rate SSI/
(1+x1) was firstly introduced by Capasso and Seior*”,
where pI/(1+nl) gravitates towards a saturation
value when it becomes large, 1/(1+#7/) measures the
restrain effect of susceptible hosts on the infected
hosts®"). The saturated infection rate SSI/(1+#]) is
more rational than the linear rate 5SI. Because it takes
the effect of the infected hosts into consideration.
The saturated infection rate has subsequently been

used in many epidemic models”' ", This paper

proposes a novel SVEIR model based on the SEIR
model. Contrary to the existing models, the proposed
SVEIR model is armed with partial immunization
and saturated infection. Thus, it is a novel worm
propagation model with partial immunization. This
paper argues that the SVEIR model is appropriate for
studying the effects of some security countermeasures
on worm propagation. By virtue of the basic
reproduction number, we prove the global stabilities
of an infection-free equilibrium point and a unique
endemic equilibrium. Based on these simulation
results, we propose some effective countermeasures
for eliminating worms.

This paper is organized as follows: In Section 2,
we formulate the extended SVEIR model, which
discusses two important factors, i.e., a partial
immunization and a saturated incidence rate, and
obtains the basic reproduction number. In Section
3, we resolve the global stability problems of the
equilibriums. In Section 4, we provide the simulation
results and propose some defending methods. Section

5 concludes the paper.

The SVEIR model extends the classical SEIR model
by incorporating a saturated incidence rate and a
partial immunization rate. The host population N
is divided into five classes and a host at any time ¢
can potentially be in one of the following groups:
susceptible, vaccinated, exposed, infectious,
recovered, which are denoted by S, V, E, I, R,
respectively. S is the class of susceptible hosts, V' is
the class of partially immunizing hosts, E is the class
of exposed hosts, [ is the class of infective hosts, and
R is the class of recovered hosts. The host population
N at time 7 is represented by N(H)=S(H)+V(H)+E()+I(t)
+R(f). The dynamic transition of the hosts is shown in

the following figure.
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Figure 1 State transition diagram of the SVEIR model

In Fig.1, I1 is the constant recruitment rate of the
host population, ¢ denotes the natural death rate of
the host population, and a denotes the death rate
for a worm attack on infectious hosts. Let § be the
transmission rate of a worm attack when susceptible
hosts have contact with infected ones, p the fraction
of recruited hosts that are vaccinated. Let y be the rate
at which the vaccine wanes. The emergence of this
scenario is due to worm variants. Let # represent the
parameter measuring the inhibitory effect. Let 5S//(1
+ nl) be the saturated infection rate, w the rate at which
exposed hosts become infectious, and ¢ the recovered
rate of infected hosts. Vaccinated hosts which contact
infected ones before obtaining immunization, have
an infection probability with a transmission rate
af (0 <o < 1)"". 5 =0 means that the vaccinated
hosts obtain the full immunization, while ¢ = 1
meaning that the vaccine loses full efficacy to work.
Taking some real factors into account, we assume that
the vaccinated hosts can obtain partial immunization,
i.e. 0 <o < 1. According to the previous assumptions,
the SVEIR worm propagation model with partial
immunization can be described by the following
system of differential equations:

SO =0-pH-L2L _ys+yv,
1+n!
V'(t)= pIl —opVI —(u+y)V,

E'(t):ﬂ+oﬁVI—(p+w)E, (1)

1+nl
I'O=wE—(u+a+d8)I,
R'()=61—- uR.

Since the state R does not appear explicitly in the
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first four equations in Eq.(1), the dynamics of Eq.(1)

is the same as the following system:

BSI

SO=0-p)II—————uS+yVv,
1+nl

V'(ty= pIl -ofVI—(u+y)V,
| BSI
1+n!
I'O=wE—(u+a+0d)l.

Our proposed SVEIR model has two aspects that

(2)
E'(t)=

+ofVI—(u+o)E,

are different from existing models. At the beginning
of worm propagation, there is no available vaccine to
eliminate infected hosts. The worm propagates with
a saturated infection rate fS//(1+#/), which is more
reasonable than SI. Once we detect a worm breakout
using an intrusion detection system, we can study
the related vaccine capable of defending against such
a worm. Some newly arrived hosts are vaccinated
through the vaccine, and no longer are infected.
As a result, the model reduces the total number of
vulnerable hosts and infected hosts.

When summing equations in model in Eq.(2), we
have (S+V+E+])Y < II-p(StV+E+]). Then the inequality
satisfies that lim sup,_,.[S()+V()+E()+(1)] < I1/u, thus
the set

Q={(CV,ENeR*": S+V+E+I<I/u}
is positively invariant for model in Eq.(2). As a result,
we study the stability condition of the model in Eq.(2)
on the set Q.

It is easily seen that the model in Eq.(2) has an
infection-free equilibrium, P, = (S,, V,, 0, 0), where

_Mputy—pw) o, _ Pl

wu+y) T u+y
thus the model in Eq.(2) can be represented as

Letx=(E, L V,S),

& F -V,
dt

where
BSI
1+n!
F(x)= 0
0
0

+aopVi
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(u+o)E
(u+a+0) -0k

V(x)=| ofVI+(u+y)V -pll
ﬂﬂuS— (1-p)rr—yv
1+nl

When differentiating F(x) and V(x) with respect
to E, I, V, S and computing them at the infection-

11 - /A
free equilibrium }:,=( wiry=pw) P44
wu+y) uty
respectively, we obtain
0 BS,+oBV, 0 0
0 0 0 0
DF(P)= :
(fo) 0 0 0 0f
0 0 0 0
H+@ 0 0 0
DV(P) = -—o upu+a+o 0 0
o opV, ut+y 0O
0 —~ B8 ¥ H

Therefore, according to Theorem 2 in Ref.[25], the
basic reproduction number of the model in Eq.(2),

represented by R, is given by

" U(,u+7—p,u+ O'pJ

R 7 Hp+y)  p+y
—4 -— 3
A ) (u+ o) u+oa+d) 3

3 Stability analysis for equilibriums
in SVEIR

The endemic equilibrium P'(S", V', E", I') of the model

in Eq.(2) can be obtained by the following equations:
A-pT-LoL s ayy=0,
1+nl
pIl-oBVI—(u+yV =0,
| psr
1+nl
wE - (u+a+0)=0.

“)

+afVI—(u+w)E=0,

When solving the model in Eq.(4), we have

V_(p+w)(p+a+§)_ BS _(u+a+0)l
wof} (1+nhop’ ® g
pl—(u+y)V o ,
="t
oV . Substituting ¥ and [ into the

first equation of model in Eq.(4) with the foregoing

obtained values, we obtain the following equation

psPA—Ux )V
offV

1— p)ii—
(=p) 1+nf

—uS+y4, .

(u+o)p+a+d)  BS
wof (+nhHop
By a direct algebraic computation, we have

H-uS—A +uAS+4,=0,

where, 4, =

pl(p+o)u+a+od)
wpS
1+nl

where 4, =

—(#+w)(#+a+5),

Ag=}’(}1+a))(#+a+5),A4= 1 ‘
wofl o(l+nl)

Supposing
F(S)=H-uS—A, + uAd,S+y4,.

For §=0,F(0)=(1—- p)IT+ A, . It is easily seen
that F(0) > 0.

prﬁ(p+w)(p+a+§)ﬁ
F)=-n-—7— I+ A,
ﬂ—(p+w)(‘u+a+5)
1+nl
1
i —,
3 wﬁ]wﬂ
<—U+ opS + HA,
———(u+o)pu+a+d)
1+n!
A phIl !
=+ == <0,
B o uroyu+ra+rd)  pS |1+l
w 1+nl

Therefore, the sign of F'(S) is negative.
On the other hand, if R, > 1, wf(S,+ oV, =

wﬂ[SO+ 0pﬂJ>(y+m)(p+a+5).
HEY




F(Sy)=11-uS, —(u+p)4 + pA,S, + 4,
HS, _ppIT_ HS

<IT-usS, - -

o(l+nl) u+y o(+nl)
w17 iS; —HEHE o,

py

IfS>S,, F(S) <0. As a result, the equation F(S) =0
only has a root §” which always exists in (0, S;). When
Ry < 1, the system in Eq.(2) only has an infection-free
equilibrium P(S,, V;, 0, 0). When R, > 1, the system in
Eq.(2) has the unique endemic equilibrium P'(S", V",

E', I') except for the infection-free equilibrium P,.

3.1 Stability of infection-free equilibrium

The model in Eq.(2) always has an infection-free
i - 11
(W+7=pw) p ,050} P,
Huty)  uty
corresponds to the model condition of non-worm

equilibrium £, =[

breakout. It is important to eliminate worms for
defenders.

Proposition 1 For the model in Eq.(2), the infection-
free equilibrium P, is locally asymptotically stable in
the set Qif R, < 1.

Proof 1 According to P, = (S,, V,, 0, 0), the Jacobian
matrix at P, of the model in Eq.(2) is

N 0 = PS,
J(P)= -pu-y 0 —ofh, |
0 -—-u-o pS,+0opV,
0 0 @ - pU—a-90

We easily obtain that it always has two negative
eigenvalues A, =—pu, and 1, = —u—y. The other
eigenvalues are decided by the following equation

(A+p+o)A+pu+a+0)-w(fS, +ofV,)=0. (5

A simple computation is used to show that Eq. (5)

is equal to
A +Qu+o+a+d8)Ai+C=0. (6)

where, C = (utw)(u + a + 0)~w(BS, + afiV,).
If Ry < 1, (uto)(u + a+ d)-w(BS, + afVy) > 0,

1 incidence and partial immunization

thus the two roots of Eq.(6) are negative. The locally
asymptotically stable condition of P, is that 1,< 0, for
i=1, 2,3, 4, which meets the sufficient condition
of the stability theory™. When R>1, (u+w)(u+a+d)
—w(fS,;tapV,).< 0, which means that J(P,) has both
a positive root and a negative root. Therefore, the
infection-free equilibrium P, is an unstable saddle
point. This completes the proof.
Proposition 2 For the model in Eq.(2), the infection-
free equilibrium point P, is globally asymptotically
stable if R, < 1.
Proof 2 To prove P, is globally asymptotically
stable, we construct the following Lyapunov function:
LE,)=wE+u+w)l

The derivation of L(E, I) with respect to 7 gives

L'(O=wE +(u+o)l’
wBSI
Tl

< (wfS+wcfV —(u+o)u+a+0d)l

_0p(S, +oVy) [ R(S +aV) 1l
- R, S, +aV

+ ooVl —(u+o)u+a+9d)I

=0.

Furthermore, L'= 0 if and only if / = 0. Thus, the
largest compact invariant set in {(S, V, E, I)|L'= 0} is
the singleton {P,}. When R, << 1, the global stability of
P, satisfies LaSalle's invariance principle *”. LaSalle's

[27]

invariance principle”” implies that P, is globally
asymptotically stable in the set Q. This completes the

proof.

3.2 Endemic equilibrium and its stability

From the aforementioned computation, we know
that the model in Eq.(2) has the unique endemic
equilibrium P". The endemic equilibrium P* means
that the worm does not die out when it appears.
Finally, every class of the model reaches its stable
state. S', V', E", I and R are not equal to zero. Next,

we investigate the local stability of the endemic
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equilibrium P'=(S", V', E', ).

Proposition 3 When R>1, the endemic equilibrium
P’ is locally asymptotically stable in the region Q.
Proof 3 The Jacobian matrix of Eq.(2) at the endemic

equilibrium P" is

S‘
- D, ¥ —“—'ﬁ—.z‘
(I+nl")
J(P') = ‘ -D, 0 -ofV
2 :
gl OBl -(u+to) D,
0 0 [0} —(u+a+o)
Bl .
where, D, =———=+u,D, =0fl +(u+y),
1+nl
D. _‘B—S O'ﬁV'

= T +
Co(+nly
Thus, the corresponding characteristic equation

can be described as
A+ +CA+CA+C, =0, (7)

where,

*

BS
+nl
C,=(u+o)u+a+9d6)+B,2u+w+a+o)

Clz4y+a+m+5+y+o-ﬂ1'+] >0,

+B (ol +3u+y+o+a+8)>0,
(140l
+B[(u+o)u+a+06)+B,Ru+wo+a+d)

C,=B,(u+o)u+a+d)+ pou

2(y+w)(,u+a+§)[aﬁf'+2y+y+ gl ‘]
1+nl

+BB,Qu+w+a+6)>0,

C,=BB,(i+a+0)+ youchV' + fou————B
4 B,y (1 )+ youcp ﬂ#(]+n‘,)z 2

= BB,(u+ o) u+a+0)+youchV’ >0.

Through a simple computation, we obtain that
H,=C >0, H,=C,C,-C;>0, H,=C,H,-C,*C,>0,
H,=C,H>0.

According to the theorem of Routh-Hurwitz"®*),
if follows that the endemic equilibrium P” is locally

asymptotically stable. From the above discussion, we

summarize the following conclusion.

In what follows, we use the geometrical approach'*”’
to study the stability of the endemic endemic
equilibrium P’

Theorem 1 Consider the following systems”":
x'=f(x),xeQ, ®
and its corresponding periodic linear system
2]

ox

p()z(1). )

Z'=

where, df'”'/ox is the second additive compound
matrix of f/0x and @ ={p(t):0=1<= w)} is the
period orbit of Eq.(8).

We make the following four assumptions:

1) there is a compact absorbing set K < and a
unique equilibrium x € D

2) model in Eq.(8) satisfies the Poincare-Bendixson
property;

3) Eq.(9) is asymptotically stable for each periodic
solution x = p(?) to Eq.(8) with p(0) € D;

4) (-1)" det T #>0.
Ox

Then, the unique equilibrium ¥ of model in Eq.(8)
is globally asymptotically stable in the set Q.
Proposition 4 If R, > 1, the endemic positive
equilibrium P" is globally asymptotically stable in the
set Q.
Proof 4 If R, > 1, model in Eq.(2) is uniformly
permanent, and the unique positive equilibrium P is
locally asymptotically stable according to Proposition 3.
Then the infection-free equilibrium point is unstable
according to Proposition 1. Furthermore, there
exists a compact absorbing set K = Q . Therefore,
assumption Eq.(1) holds.

The Jacobian matrix of the model in Eq.(2) is
denoted by

G —u 0 -G,
0 -D, 0 -G,
J(P)= s
G ofl 0-(u+w) G,+G,
0 0 w =5
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where, G,=p1/(1+nl), G,=pI/(1+y])*, G=cfV,
G=ofl+(uty),Gs=utats .

We choose the matrix H with H = diag(-1, -1, 1,
—1). It is easily proven that all off-diagonal elements
of HJ(P)H are not positive. Thus, the model in Eq.(2)
is competitive. Therefore, assumption 2) holds.

Through an elementary row transformation of the

matrix J(P), we obtain

G -u 0 -G,

-D 0 -G

J(P)= 4 3
-4 —p —(utew) 0

0 0 w -G,

According to Proposition in Ref.[30], the second
additive compound matrix J*!(P) of J(P) can be
denoted by

-E, 0 -aBfV 0 G, 0
-« E, 0 y 0 G,
0 w 0 0
J(P)= ; / ,
u 0 0 E, 0 opV
0 0 0 o E 0
0O 0 —-uxg 0 -—-u E
where,
E =- 2 +2u+afl+vy |, E,=— L +2u+w |,
1+n/ 1+ 5!

E, =—( pr +2y+a+a],E4=—(aﬁ1+2p+y+w),
’ 1+nl

Es=—(apl +2u+y+a+0),E,=-(2u+w+a+d).

The second compound system of the model in

Eq.(2) within a periodic solution is described by

(X'(t)=—-E,X +0pVZ +G,M ,
Y'(()=-uX -E,Y +yL- BG,U ,

Z'(1) = wY—[ P
4 1+l (10)

+2,u+a+6)Z+-yM,

L'()=uX + (6Bl +2u+7y+w)L+aBfVU ,
M'(t)y=wL+(6fl +2u+y+a+d5)M ,
UWW)y=-pZ-uM -Qu+w+a+9d)U .

To verify that the system in Eq.(10) is asymptotically

stable, we choose the following Lyapunov function:

V(X,Y,Z,L,M,U;S,V,E,I)

E
=5up{|XI+|Y|+ILI,7(|Z|+|M|+IUI)}-

Using the uniform persistence, we know that there
is a positive distance between the orbit of P(¢) = (S(¢),
V(%), E(t), I(?)) and the boundary of Q. As a result,
there exists a constant ¢ satisfying the following
inequality:

V(X,Y,Z,LLM,U;S,V,E,I)
Zesup{| X LY LIZLILLIM LU

forall (X, Y, Z, L, M, U) € R®and (S, V, E, I) € P({).

Let ¢= {y, w}. By direct computations, we obtain
the following inequalities:

D | X(OIS-EX+ pS M <-Q2u+¢)
a+a)
S mwy+1z0) 00D,

T+ )y
D YO IS-Qu+P| YO +y|L®)]
S
+ fn MO+ 201U,
D, | ZW)I< o Y(0)| ~@u+a+8)| Z(0) | +7| M(D)|.
D, | L)< | X()| ~@uu+ $)| L) | +0BV |UQ)).
D, |M()IS 0| L) ~@u+a+8) | M®)| -y | M),
D UM< -2u+a+8)|Uw).

Therefore, we obtain
D(X|+|Y|+|LDS-QCu+d)(X|+|Y[+]|L])
E BSI

+_ P —————
I\ E(Q+nly

D(Z|+IM|+|UDso(X|+|Y|+]L])

-Quta+d|Z|+|M|+|U)).

Then,

+aﬁVﬂ(|Z|+|Mi+|U|),

E E
Doz ( Ll MU Dsa—( X% 1] #] L)

E T E
HE e 2u—a -8 |=( L+ | M|+|U)).
[Elﬂa][(llllll)

From the pervious formula, we have

D_ |V ()|< max{g, (1), g, (D} (1),
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where,

I
gl(t)——zﬂ—{ﬁ'l‘ﬂSm‘i‘O’ E

r ’

gz(t):m£+£—]——(2p+a+5).

I E I
From the model (2), we can obtain
LB oy i-(ura),
E (1+nl) E
I E
—=0——(u+a+9).
7o (u+a+9)
Therefore,

’ r

E E
g (t)—f—#— (u—9). gz(’)—f — .

Ify = o, then ¢ =w-w= 0. If < @, then v ¢
= w —y > 0. Under the two cases, we always have
[ sup{g, (1), g, (O}t <In E(t) [; ~p1g = -5 <0 which
implies that (X(7), Y(¢), Z(¢), L(z), M(¢), U(t))—0,
as t—oo. Therefore, the second compound system
in Eq.(2) is asymptotically stable. This verifies the
assumption 3).

Let J(P") be the Jacobian matrix of the model in
Eq.(2) at P, we obtain
B e B e P

(I+nl")
JPHY=|0 -D, 0  opV
-# -4 -D, 0

0 0 ® -D,
St
...Dl ¥ _ﬁ—tf
(I+nl")
=w| 0 -D, opV’
Hoop 0
+(u+a+0)(u+w J
(u Np )‘ 0 -D,

5,
(/7
+(pu+a+6)u+w)DD,>0.

= ;Jw{crﬁV'(D] +y)+

Therefore, (—1)° det(J(P")) > 0. This verifies the

assumption 4).

We verify all the assumptions of Theorem 1.

Therefore, P is globally asymptotically stable in Q.

3.3 Worm epidemic control

Proposition 2 indicates that the combination efforts
(represented by the formulation of R;) can eliminate
worm prevalence in the real networks. Under the
SVEIR propagation model, we investigate how to
control the infection-free equilibrium in network
administration.

Corollary 1 In order to eliminate worms, the partial

immunization rate ¢ should satisfy

O_{(;Ha)) (u+ra+8) (u+ty) u+y-pu
popIl PH

- (1D

Proof 5 Using both Eq.(3) and Proposition 2, this
corollary holds.

4 Numerical simulations

This section develops numerical experimental steps
to examine our model and evaluates the effect of the
implemented methods. It is difficult to adopt realistic
parameters or real network traffic for our study,
because many parameters in previous models are
assumed according to their hypothesis. We choose
the total host population N =1 000 000. The average
scan rate of the Slammer worm is s = 4 000 per
second”. The infection rate of the Slammer worm is
S = /2" =9.3x10"". We take proper values of IT and
4 so that IT/u = N, implying that the total number of
hosts remains unchanged. Therefore, we set 7 = 100
and #=0.000 1. 0 = 0.4, ® = 0.02, y=0.01, S(0) = 999,
985, 1(0) =10, E(0)=0,1(0)=5,R(0)=0,n=2,p=
0.2, 2=0.000 1, ¢ = 0.05. Using the above parameters,
we can obtain the basic reproduction number R, =
0.908 < 1. The worm should gradually be eliminated
according to Proposition 1 and 2. Fig.2 illustrates the

change trend of susceptible, infected and recovered



hosts when R, is 0.908, respectively. From Fig.2, it is
clearly seen that the worm propagation is depressive,
which is consistent with an analysis of the theory.
Finally, all the infected hosts vanish, and reach a

recovered state.
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Figure 2 Globally stable infection-free equilibrium

In the second experiment, we change some related
parameters about to guarantee R, > 1. When p = 0.4
and 0 = 0.003, we have R, = 9.847 >1. The other
parameters remain unchanged. The simulation results
are shown in Fig.3, where it can be seen that the
number of susceptible, infected and recovered
hosts eventually maintain positive values between

0 and I1/u, which indicates that the worm does not
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Figure 3 Globally stable endemic equilibrium

urated incidence and partial immunization

vanish, if worms are initially present. Finally, these
three states reach their equilibrium points P'= (38 094,
83 543, 83 528), which is consistent with Proposition
3 and 4. The unique endemic equilibrium P" is globally
asymptotically stable if the basic reproduction
number is larger than unity.

To demonstrate that the effect of the partial
immunization rate on infected hosts, we set the
partial immunization rate ¢ to different values. The
others parameters remain the same. Fig.4 shows
that the effect of changing the partial immunization
rate on worm propagations when ¢ = 0, 0.1, 0.3,
0.5, 0.7, respectively. Fig.4 shows that no hosts
are infected when ¢ = 0, which means that all
hosts gain full immunization. However, in real-
world networks, it is very difficult to implement
full immunization. As expected, a smaller partial
immunization rate results in slowing down the
worm propagation speed, more importantly, and
decreasing the total number of infected hosts. The
partial immunization rate o is related to many factors,
such as the performance of network security devices,
professional knowledge of the network administrator,
and the security consciousness of users. As a result,
in order to remove worms as soon as possible, we
require the support from all circles of society. Once

the vaccine has been studied, computer users should
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Figure 4 Effect of the partial immunization rate
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immunize their computers in a very short time, which
would guarantee them reaching a smaller partial

immunization rate o.

5 Conclusion and future work

This paper presented a novel dynamic SVEIR
model for worms. The SVEIR model extends the
classical SEIR model by incorporating a saturated
incidence rate and a partial immunization rate.
More specifically, this study investigated the global
dynamic behavior of the SVEIR model by using the
Lyapunov function and a geometric approach. The
theoretical analysis demonstrated that when the basic
reproduction number is smaller than or equal to one,
the SVEIR model has an infection-free equilibrium,
and is globally asymptotically stable. When the basic
reproduction number is larger than one, the SVEIR
model has a unique endemic equilibrium and is
globally stable. The simulation results are consistent
with theoretical analysis. Our proposed SVEIR
model is expected to be highly useful to analyze the
availability and efficiency of partial immunization,
which becomes efficient if the partial immunization
rate is very small. This is very helpful to eliminate
worms as soon as possible.

In future, we plan to examine how to eliminate
worms, quickly prevent their propagation across
networks after detecting the worms attack, and
expand the proposed SVEIR model to scale-free

networks.
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